
Global Journal of Innovation and
Emerging Technology

2022 Volume 1 Number 1 Jan-Jun

E-ISSN:2583-4401

Research Article
Machine Learning

Publisher

www.adsrs.net

Machine Learning-Based False Positive Software Vulnerability Analysis
Shahid M.1, Gupta S.2*, Pillai S.3

DOI: https://doi.org/10.58260/j.iet.2202.0105
1 Mohammad Shahid, Department of Computer Science and Engineering, Noida Institute of Engineering and Technology, Greater Noida,

Uttar Pradesh, India.

2* Sunil Gupta, Department of Computer Science and Engineering, Chitkara University Institute of Engineering and Technology, Chitkara

University, Punjab, India.

3 Sofia Pillai, Department of Artificial Intelligence, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India.

Measurements and fault data from an older software version were used to build the fault prediction
model for the new release. When past fault data isn't available, it's a problem. The software
industry's assessment of programme module failure rates without fault labels is a difficult task.
Unsupervised learning can be used to build a software fault prediction model when module defect
labels are not available. These techniques can help identify programme modules that are more
prone to errors. One method is to make use of clustering algorithms. Software module failures can
be predicted using unsupervised techniques such as clustering when fault labels are not available.
Machine learning clustering-based software failure prediction is our approach to solving this complex
problem.

Keywords: Machine Learning, Supervised Learning, Vulnerabilities, Software, Clustering Algorithm

Corresponding Author How to Cite this Article To Browse

Sunil Gupta, , Department of Computer Science and

Engineering, Chitkara University Institute of

Engineering and Technology, Chitkara University, ,

Punjab, India.

Email:

Mohammad Shahid, Sunil Gupta, Sofia Pillai, Machine

Learning-Based False Positive Software Vulnerability

Analysis. Glo.Jou.of.Innov.and.Eme.Tech.

2022;1(1):29-35.

Available From

http://iet.adsrs.net/index.php/iet/article/view/6

Manuscript Received Review Round 1 Review Round 2 Review Round 3 Accepted
2022-05-14 2022-05-16 2022-05-23 2022-05-30 2022-06-05

Conflict of Interest Funding Ethical Approval Plagiarism X-checker Note
Nil Nil Yes 19%

© 2022by Mohammad Shahid, Sunil Gupta, Sofia Pillaiand Published by ADSRS Education and Research. This is an Open Access article licensed
under a Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/ unported [CC BY 4.0].

Global Journal of Innovation and Emerging Technology 2022;1(1) 29

Introduction
To meet the objectives of a software quality
management project, SOFTWARE QUALITY MODELS
are effective tools. A software quality model can be
used to identify defective programme modules.
Since only those programme modules will benefit
from the limited resources allotted for software
quality inspection and enhancement, these
resources can be used more efficiently while also
saving money. One of the most important aspects of
developing high-assurance systems is being able to
identify and discover any software flaws early in the
development process.

Data from prior releases or similar projects'
software measurement and defect (quality) data is
frequently used to train a software quality model.
Using the newly-trained model, we can now
estimate the quality of the existing project
components. This kind of supervised learning
technique assumes that the development team has
previously worked on systems similar to the current
project and that defect data for all programme
modules in the training data is available. There are
a number of practical limits on the availability of
defect data for modules in training data in the
actual world of software development. Earlier
releases or similar projects, for example, may not
have had software defect data collected. Using
software measurement and defect data from
previous projects for modelling purposes is wrong
due to the absence of business expertise in building
a similar system. Distributed software development
is widespread in today's globalised world of
technology. Consequently, software defect data may
not be gathered by all development sites depending
on the organisational structure and resources of
specific development sites. The supervised learning
approach to software quality modelling cannot be
applied since the training data lacks defect data or
quality-based class labels. So the software
engineering specialist is in charge of assessing
software quality or determining if programme
modules are failure prone (fp) or not (nfp). The
process of individually labelling each programme
module is time-consuming, costly, and labour-
intensive. We provide a semi-supervised clustering
strategy to help the expert in the labelling process.
The proposed method relies on constraint-based
clustering and k-means as the underlying algorithm.
When using k-means clustering, the

Constraint makes sure modules (instances) remain
in clusters that have already been labelled as either
fp or nfp. Unlabelled S/W modules are subjected to
a two-stage quality assessment using the proposed
approach. Using single metrics thresholds in the
first case and Fuzzy C in the second Means
clustering is compared to mean squared error in
terms of time and value. To organise things into
clusters, clustering algorithms group things that are
similar while separating those that are unlike. Using
clustering approaches, modules with similar metrics
can be grouped according to how similar or
dissimilar they are (distances). After the clustering
process is complete, an expert or an automated
approach can examine the representative modules
of each cluster to determine whether or not it is
prone to failure. In this work, we demonstrate that
software metrics thresholds can be used to name
clusters instead of consulting an expert during this
time-consuming step. The process of grouping is
referred known as clustering. Partition Clustering:
For the partitional clustering algorithm, the
database of n objects is partitioned into many
clusters, each of which optimises a clustering
criterion within the cluster, such as minimising
squared distance from the mean. Partitional
clustering is one sort of analysis that uses K-means
clustering as a method. Machine Learning and
Clustering There are two forms of clustering: simple
clustering and complex clustering.

Engaging with a Machine to Learn: To learn from
data, machine learning latches on to and extracts
attributes from that data. The learning and
prediction performance will have an impact on the
data set's size and quality. Engaging with a Machine
to Learn

Types of machine learning

Figure 1 Types of Machine Learning

Shahid M et al: Machine Learning Based False Positive Software Vulnerability Analysis

Supervised learning: In order to train
supervised learning, it is necessary to use a
labelled data set.

Global Journal of Innovation and Emerging Technology 2022;1(1)30

Many different decision tree algorithms are
available:

A. Working on a C4.5 (which is the next version of
ID3) (classification and regression tree)

B. MARS: extends the decision tree to better handle
numerical input.

C. The probabilistic learning approach Nave Bayes
has been extensively studied. The naive Bayesian
classifier says there is no such thing as attribute
addiction. This is called conditional independence.

D. Nave Bayes is a wonderful approach to learn
about expectations.

E. The Nave Bayes classifier uses fast calculation to
make judgments.

Using supervised machine learning, classification
and regression issues can be solved. But it's largely
used for classification. SVM can classify nonlinear

Data and linear data. This approach assigns a value
to each coordinate, making each data point an n-
dimensional space point (where n is the number of
characteristics you have).

Actions to help the vector machine: SVMP
classification, support vectors, and support vector
machine Support vectors; Support vector machines
Preparation: Prep data for training.

A real-world vulnerability prediction scenario was
the purpose of the Deep Learning Vulnerability
Detection Project. They were dismayed to see their
output had fallen by more than half. A recent study
found issues with deep learning-based vulnerability
forecasting systems' training data and model
selection (e.g., data duplication, unrealistic
distribution of vulnerable classes, etc). Token-based
techniques are a good example.) So-called "fixes"
often neglect the root causes of They hunt for
insignificant artefacts in the dataset rather than
significant ones. Including real vulnerability
prediction variables in data collection and model
creation can lead to more empirically based
solutions. The new tools outperform the old ones in
precision (33.57%) and recall (90%) (128 percent).
The research roadmap emphasises the inadequacies
of present approaches. Please read it. Thanks. They
provide VIVA, a binary-level summarising and patch
matching tool, to detect reoccurring vulnerabilities.
To find incomplete vulnerabilities and repair
signatures, slice and refine pseudocode traces.
Security risks are promptly identified via pre-
filtering and signature matching. When it comes to
one-day and recurring vulnerabilities, VIVA's source
code and binary matching solutions outperform the
competition (28.58s per signature search in 4M
functions). 92 new vulnerabilities in real-world
project series and versions. Eleven are still
unresolved in this release.

AI Security Vulnerabilities Found (AI) Analyze the
D2A dataset. Error detection uses differential
analysis. The Open-Source Version Pairings dataset
contains open-source version pairs. Static analysis
was done on each project version before and after
bug patches. If no further vulnerabilities were
found, a fix was issued. Its massive tagged dataset
was utilised to train vulnerability detection models.
To begin, they utilised a dataset to train a classifier
to detect false positives.

Classifying Software Error Messages Static Code
Analysis Reports [4]

Shahid M et al: Machine Learning Based False Positive Software Vulnerability Analysis

A common application of supervised learning is
to forecast future use from historical data. This
method has two subtypes: regression and
classification. In regression, the label is a
number that is either positive or negative. The
label has little significance when it comes to
classification, on the other hand.

Unsupervised learning uses data that hasn't
been previously classified and uses that
information to produce predictions.

Games, navigation, and robots all use
reinforcement learning as a method of teaching.
Each of these three factors plays a critical role
in how this learning approach works [10,14].

strategies for machine learning: The
development of algorithms for the construction
of machine learning models and major machine
learning processes. Three classifiers are
discussed in this research: decision trees, nave
bayes, and support vector machines.

Decision tree: A decision tree is constructed
through the use of supervised learning. It is a
predictive model method in the fields of artificial
intelligence, data mining, and statistics. In
decision analysis, a decision tree can serve as
an illustration of decision making and decisions.
Despite the fact that a data mining decision tree
characterises data without making decisions,
the resulting allocation tree can be utilised as a
decision-making input in some cases.

Global Journal of Innovation and Emerging Technology 2022;1(1) 31

In the software development industry, static source
code is regularly inspected for faults and flaws.
Several technologies are used to avoid identifying
bad code. Various bug-finding methodologies can
result in numerous notifications for the same set of
faults. Code analysis is time-consuming and costly
because of the enormous number of warnings.
Using principal component analysis, they built an
analytical model by combining software warning
categories from commonly used Java and C++ issue
detection tools. Respondents ranked false positives
as the least important problem, whereas the most
challenging problems were prioritised.

Software Vulnerability Analysis Using Advanced
Techniques and Tools [4].

Our goal is to find ways to make various
vulnerability detection technologies more effective
(increasing the detection rate and decreasing the
number of false-positives). It was decided to employ
static code analysis (SCA) as the primary method
because of its high detection rate. Because of the
high number of false-positive outcomes, they want
to include SCA into other detection systems. (An
illustration would be software metrics.) It will be
easier for developers and patchers to work on less
vital jobs if problems are fixed first.

CURRENT INFRASTRUCTURES Previously, software
module defects were predicted using Quad Tree-
based K-Means. Using a quad tree as a starting
point, the K-Means Algorithm clusters data using its
results. To achieve the desired number of cluster
centres, simply adjust the threshold value. A Quad
Tree was predicted to be preferable for grouping in
the beginning. The most significant advantages
have already been identified. 4 Leaf Trees (c) It's
possible to utilise this strategy to foresee software
module errors.

Currently Existing System Issues:

A. For this reason, K-Means is a challenge to
employ.

B. The cluster centres are assigned at the beginning
of the Quad Tree-based technique.

C. Using Quad Tree and K-Means takes longer.

D. It's impossible to say what the failure rate of a
piece of software is.

Fourth, a Methodology is Suggested: We created a
machine learning clustering technique to help find

Software bugs. We utilise an attribute selection
technique to narrow the solution space after starting
with the input dataset. Using the attribute selection
strategy, you can focus on the most important
attribute while dealing with less traits. An attribute's
importance is determined by how highly it is
regarded. The most critical aspects can be scored.
When one Attribute is selected, the accessible
Attributes are reduced. There is only a certain
quantity available. This trimmed-down characteristic
is used in clustering. By using clustering criteria
such as squared distance from the mean
minimization, this technique divides a database of
items into groups that may be compared. Partitional
clustering can be approached using fuzzy-C
methods, such as fuzzy-C means. After the data has
been clustered, Fuzzy-C Means are used to further
cluster it. Clustering (FCMC) keeps track of the
centroid values, which can be thought of as a
mechanism to calculate a threshold. In order to be
sure that this value is correct, the centroid data
values must be compared to it. VULNERABILITIES y
was assigned if the centroid data metric value
exceeded the threshold; otherwise, it was
designated not VULNERABILITIES y.

Advantage in proposed system

System Architecture

Figure 2 Proposed System

A. VULNERABILITIES Dataset: to put together a
database of software (AR3, AR4 and AR5). Reading
and storing the Dataset's data has completed. To
use Attributes Selection, you must first get the
attributes' names.

Shahid M et al: Machine Learning Based False Positive Software Vulnerability Analysis

Propose a single technique

FUZZY C means is used for Clustering.

Processing time is reduced

Metric Threshold has to Clear description

Global Journal of Innovation and Emerging Technology 2022;1(1)32

B. Attribute Selection: A list of attributes for our
dataset will be returned. The dataset consists of 30
different variables. It's possible to reduce the
amount of useful learning features by focusing on a
few key criteria. It will take a long time and a lot of
hard work to incorporate all of these characteristics.
As a result, we're better able to focus on what really
matters: our core business. Determine the
relevance of an attribute by using Attribute
Evaluation. We pick and rank qualities with the help
of the Weka programme.

C. Using machine learning to create clusters: A
group of objects may be described as "similar," but
they are also "different" due to their differences. In
order to include the same set of information in
different clusters, FCM (machine learning data
clustering) can be employed Only when the data has
been grouped can Machine Learning be applied to it.
The cluster centroid is obtained and the data is split
after the clustering phase is complete.

D. Metric Threshold: Decide on the right metric
thresholds based on a set of criteria. It is
determined by characteristics such as the number of
code lines and Cyclomatic Complexity. Other
parameters include the number of operators and
operands in the programme, as well as the number
of unique operators and operands in the programme
(TOpnd).

The final step is to calculate the threshold vector
[LoC, CC, UOp, UOpnd, TOp, TOpnd].

Detect VULNERABILITIES: Once the clustering
process is complete, a single data point is stored in
each cluster. Determine the metric threshold for
each cluster. If the centroid data point's metric
value exceeded the threshold, the cluster was
deemed defective; otherwise, it was classed as non-
defective.

As the name implies, this technique uses just-in-
time defect prediction to determine whether or not
the file in question in the current changeset is
defective at the time of the change. Just-in-time
defect prediction systems such as the ones listed
below are traditional:

1. Training Data Extraction Based on the
project's revision history and issue tracking system,
label each change as buggy or clean. A faulty
change contains one or more flaws, whereas a
flawless change is error-free.

2. Feature Extraction. Calculate new values for
relevant characteristics based on historical data.
Researchers have previously utilised a wide variety
of features to classify changes.

3. Model Learning. Use a classification approach
to create a model based on the labelled changes
and their related attributes.

4. Model Application. For a new change, extract
the values of various features. Input these values to
the learned model to predict whether the change is
buggy or clean.

Figure 3 Flow of Proposed System

Model construction and prediction are the two main
aspects of the system. In the model-building phase,
our goal is to generate a classifier (i.e., a statistical
model) utilising deep learning and machine learning
approaches from past changes with well-defined
labels (i.e., buggy or clean). In the prediction
phase, this classifier would be used to assess
whether an incoming modification would be buggy
or clean.

Performance measures: Machine learning
evaluates prediction accuracy using a variety of
performance metrics:

Shahid M et al: Machine Learning Based False Positive Software Vulnerability Analysis

Precision

Recall

Accuracy

F measure

Roc (receiver operating characteristics)

Global Journal of Innovation and Emerging Technology 2022;1(1) 33

Table 1: Confusion Matrix

There were calculated using the prediction
classification confusion matrix table:

A. TP (true positive): Number of correct predictions
that an instance is positive.

B. TN (true negative): Number of correct predictions
that an instance is negative.

C. FN (false negative): Number of incorrect
predictions that an instance is positive.

D. FP (false positive): Number of incorrect
predictions that instance is negative.

Accuracy: The total number of predictions that
were correct

Accuracy (%) = (TP+TN)/(TP+FP+FN+TN)

Precision: The predicted true pages those were
correct:

Precision (%) = TP/(TP+EP)

Recall: The predicted true pages that were
correctly identify.

Recall (%) = TP/(FN+TP)

F-Measure: Derives from precision and recall
values:

F-Measure (%) = (2 x recall x precision)/ (recall +
precision)

Results and Analysis

Figure 4 Fault Detection Rate

Figure 5 Error Rate

So far as result & analysis is concern from Figure 4
we have seen the Fault Detection Rate by applying
the formula explained in above confusion matrix,
with help of confusion matrix easily we can predict
the result with the help of machine learning & the
matrix compares the actual target values with those
predicted by the machine learning model.

We looked for trends in samples that had been
misclassified (false positives and false negatives). n-
gram statistics from the best n-grams combination
we discovered (69 percent accuracy) were evaluated
to perform error analysis. We determined the mean
value of each attribute across all samples. Real
negatives, false positives, true positives, and false
negatives were all treated independently as shown
in figure 5.

Conclusion
A technique based on Machine Learning clustering
and Metrics threshold-based VULNERABILITIES
prediction has been developed for situations in
which there is no prior data on VULNERABILITIES
available. When using the weighted attribute
selection approach, just the most critical attributes
are displayed. Organizing the data is accomplished
through clustering, with each cluster having a
unique centroid value. For each cluster, the
threshold was set using the Metric Threshold
function and its value compared to the centroid. The
data for VULNERABILITIES y and non-
VULNERABILITIES y were then displayed. Based on
the first experiment's findings, it's clear that
changing hyperparameters enhanced precision and
other performance measures. Trains for a particular
vulnerability, like this one, may have an influence
since they are more effective because they are
targeted. It is the goal of the new Fast scan to
construct models that anticipate only one type of
vulnerability before merging the components into a
global analyser in an end system, whereas the
previous Fast scan aimed to predict a wide range of
vulnerabilities.

Reference
1. Saikat Chakraborty;Rahul Krishna;Yangruibo
Ding;Baishakhi Ray “Deep Learning based
Vulnerability Detection: Are They have There Yet”
IEEE Transactions on Software Engineering Year:
2021 | Early Access Article | Publisher: IEEE

Shahid M et al: Machine Learning Based False Positive Software Vulnerability Analysis

Global Journal of Innovation and Emerging Technology 2022;1(1)34

2. Yang Xiao;Zhengzi Xu;They haveithey havei
Zhang;Chendong Yu;Longquan Liu;They havei
Zou;Zimu Yuan;Yang Liu;Aihua Piao;They havei Huo
“VIVA: Binary Level Vulnerability Identification via
Partial Signature” 2021 IEEE International
Conference on Software Analysis, Evolution and
Reengineering (SANER) Year: 2021 | Conference
Paper | Publisher: IEEE

3. Yunhui Zheng;Saurabh Pujar;Burn Lewis;Luca
Buratti;Edward Epstein;Bo Yang;Jim
Laredo;Alessandro Morari;Zhong Su “D2A: A
Dataset Built for AI-Based Vulnerability Detection
Methods Using Differential Analysis” 2021 IEEE/ACM
43rd International Conference on Software
Engineering: Software Engineering in Practice
(ICSE-SEIP) Year: 2021 | Conference Paper |
Publisher: IEEE

4. Binh Hy Dang “A Practical Approach for Ranking
Software Warnings from Multiple Static Code
Analysis Reports” 2020 SoutheastCon Year: 2020 |
Volume: 2 | Conference Paper | Publisher: IEEE

5. José D’Abruzzo Pereira “Techniques and Tools for
Advanced Software Vulnerability Detection” 2020
IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW) Year:
2020 | Conference Paper | Publisher: IEEE

6. V. Bhattacherjee and P.S. Bishnu, “Software
VULNERABILITIES Prediction and Defect Estimation
Using Machine Learning and KMedoids Algorithm” –
2011

7. P.S. Bishnu and V. Bhattacherjee , “Application of
K-Medoids with kd-Tree for Software
VULNERABILITIES Prediction” –, 2011

8. P.S. Bishnu and V. Bhattacherjee, “Outlier
Detection Technique Using Quad Tree” –, 2009

9. Goyal A.,Sharma V.K. and K. Sandeep,
“Development of hybrid ad hoc on demand distance
vector routing protocol in mobile ad hoc network” ,
International Journal on Emerging
Technologies,11(2), pp. 135–139,2020.

10. Goyal A.,Rathore L. and k. sandeep, “A Survey
on Solution of Imbalanced Data Classification
Problem Using SMOTE and Extreme Learning
Machine”, Lecture Notes in Networks and Systems,
204, pp. 31–44, 2021

11. S. Zhong, T.M. Khoshgoftaar, and N. Seliya,
“Analyzing Software Measurement Data with
Clustering Techniques” , 2004

12. C. Catal, U. Sevim, and B. Diri, “Clustering and
Metrics Threshold Based Software VULNERABILITIES
Prediction of Unlabeled Program Modules” , 2009

13. Goyal A, Sharma V.K., ”Modifying the MANET
routing algorithm by GBR CNR-efficient neighbor
selection algorithm”, International Journal of
Innovative Technology and Exploring Engineering,
8(10), pp. 912–917, 2019

14. Philip K Chan and Richard P Lippmann. Machine
learning for computer security. Journal of Machine
Learning Research, 7(Dec):2669–2672, 2006.

15. Brian Chess and Gary McGraw. Static analysis
for security. IEEE security & privacy, 2(6):76–79,
2004

16. Wes Felter, Alexandre Ferreira, Ram Rajamony,
and Juan Rubio. An updated performance
comparison of virtual machines and linux
containers. In 2015 IEEE international symposium
on performance analysis of systems and software
(ISPASS), pages 171–172. IEEE, 2015

17. Samuel Gonçalves Ferreira. Vulnerabilities fast
scan - tackling sast performance issues with
machine learning. Master’s thesis, University of
Minho, 2019.

18. Dr. Mohammad Shahid” “Black Hole Detection
and Prevention Using Digital Signature and SEP in
MANET” in the 10th IEEE International Conference
on Emerging Trends in Engineering & Technology
Signal and Information Processing (ICETET SIP-22)
held during April 29-30, 2022 at G H Raisoni College
of Engineering, Nagpur (India).

19. MOHAMMAD SHAHID” Efficient and Reliable
Packet Routing Solutions for Wireless Sensor
Networks” 3RD INTERNATIONAL CONFERENCE
(ONLINE) ON INNOVATIONS IN COMMUNICATION
COMPUTING AND SCIENCES (ICCS-2021)

20. Rahma Mahmood and Qusay H Mahmoud.
Evaluation of static analysis tools for finding
vulnerabilities in Java and C/C++ source code. arXiv
preprint, 2018. arXiv:1805.09040

21. D. Steinley and M.J. Brusco, “Initializing K-
Means Batch Clustering: A Critical Evaluation of
Several Techniques” , 2007

Shahid M et al: Machine Learning Based False Positive Software Vulnerability Analysis

Global Journal of Innovation and Emerging Technology 2022;1(1) 35

